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1. INTRODUCTION

Let A be a C*-algebra with unit 1 and let S be the state space of A, i.e.
S={pe A" : p > 0,p(1) = 1}. For each a € A, the C*-algebra numerical
range is defined by

Vi(a) :=={¢(a): p € S}.
It is well known that V(a) is non empty, compact and convex subset of the
complex plane, V(al + fa) = a + V(a) for a € A and o, € C, and if
z € V(a), |z| < |la]] (For further details see [3]).

As an example, let A be the C*-algebra of all bounded linear operators on a
complex Hilbert space H and A € A. Tt is well known that V(A) is the closure
of W(A), where

W(A) :={{Ax,z) : x € H, ||z| = 1},
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is the usual numerical range of the operator T

In [7] the authors have proved that,

Theorem 1. Let the operator A be quadratic i.e.;
A2 —2uA— N[ =0

with some p, A € C. Then W(A) is the elliptical disc with foci z1 2 = p =+
V2 + X and the major/minor azis of the length

s+ |p? + As7h
Here s = ||A — pl||.
The purpose of this paper is to show that an analogous result holds for
quadratic elements of any C*-algebra.
2. MAIN RESULT
Theorem 2. If A is a C*-algebra with unity and a € A is quadratic i.e.
a® —2ua — A1 =0
with some p, A\ € C. Then V(a) is the elliptical disc with foci z12 = p =+
\/,uQ——l—/\ and the magjor/minor axis of the length
s+ |+ Ash
Here s = |la — pl||.
Proof. Let p be a state of A. Then there exists a cyclic representation ¢, of A
on a Hilbert space H, and a unit cyclic vector x, for H, such that
pla) = (pp(a)zp,zp), a € A

By Gelfand-Naimark Theorem the direct sum ¢ : a — > s ®pp(a) is a faith-
ful representation of A on the Hilbert space H = 3 s @H, (see [5]). There-
fore for each p € S, p(a) € W(p,(a)) C W(p(a)) and hence V(a) contained in
W(p(a)). On the other hand if x is a unit vector of H, then the formula p(b) =
(p(b)z,z),b € A defines a state on A and hence p(a) = (p(a)z,z) € V(a) and
it follows that

(1) W(Ta) = V(a)
where T, = (a). (see also Theorem 3 of [2]).
But T2 —2uT, -\ = p?(a)—2up(a) —Ap(1) = p(a? —2ua—A1) = ¢(0) = 0.

Then T, is quadratic operator. So by Theorem 1, W (Ty) is the elliptical disc
with foci at 212 = pp £ 4/p? + X and the major/minor axis of the length

s+ |+ st
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where s = || T, — || Since ¢ is isometry, then s = ||¢p(a — pl)|| = |ja — pl].
Now the proof is completed by equation (1). O

Corollary 3. If a is a nontrivial self-inverse element in C*-algebra A i.e.
a? = 1, then V(a) is a closed ellipse with foci at +1 and magjor/minor azis
lall + o

llall

Corollary 4. If a is a nontrivial nilpotent element with nilpotency 2 i.e. a®> =

0, then V (a) is a closed disc with center at the origin and radius @

3. HARDY SPACE

Let U denote the open unit disc in the complex plane, and the Hardy
space H? the functions f(z) = Yoo, f(n)z” holomorphic in U such that
> |J?(n)|2 < 00, with f(n) denoting the n-th Taylor coefficient of f. The
inner product inducing the norm of H? is given by < f,g >:= -, f(n)ﬁ
The inner product of two functions f and g in H? may also be computed by
integration:

1 ——dz
<fo>=gm [ FERET

where QU is positively oriented and f and g are defined a.e. on 0U via radial
limits.

For each holomorphic self map ¢ of U induces on H? a bounded composition
operator Cy, defined by the equation Cy, f = f o @(f € H?). In fact (see [4])

1 1+ |¢(0)]
Vimeor ==y i)

In the case ¢(0) # 0 Joel H. Shapiro [9] has been shown that the second
inequality changes to equality if and only if ¢ is an inner function.

A conformal automorphism is a univalent holomorphic mapping of U onto
itself. Each such map is linear fractional, and can be represented as a product
w.qy,, where
_p-z
1 -pz2
for some fixed p € U and w € 9U (See [8]).
The map «, interchanges the point p and the origin and it is a self-inverse

ap(z) : (z € U),

automorphism of U.
Therefore C,, is a self-inverse composition operator and by corollary 3 W(Cy,,)

is an ellipse with foci at +1 and major axis ||Cq, || + =2
! [Capll V1—|p|2

This is another proof of [1].
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4. DIRICHLET SPACE

The Dirichlet space, which we denote by D, is the set of all analytic functions
f on the unit disc U for which

/|f’(z)|2dA(z) < 00,
U

where dA denote the normalized area measure. Equivalently an analytic func-
tion f is in D if Y .~ n|f(n)]* < oo, where f(n) denotes the n-th Taylor
coefficients of f. The inner product inducing the norm of D is given by

< f.g>p= F(0)3(0) + /U £ ()5 (2)dA(z), f,g€D.

The inner product of two functions f(z) = > 77 f(n)z"and g(z) = >0 o d(n)2"
in D may also be computed by

< f,9 >p:= f(0)g(0) + > _ nf(n)j(n).
n=1

For each holomorphic self-map ¢ of U we define the composition operator C,
by the equation Cyf = fop(f € D). A univalent self-map ¢ of the unit
disc is called a full map if it maps U onto its subset of full measure, i.e.,
A(U\p(U)) = 0. It is shown in [6] that for any univalent full map ¢,

" |_\/L+2+\/L(4+L)
ell = 5 ’

where L = —log(1 — |¢(0)]?).
Thus we have the following:

The W (C,,) is ellipse with foci at =1 and major/minor axis

o bt L2+ VIUFT) 2
P G, | \/2L+4+2\/L(4+L)
It is easy to see that W(C,q,) = [—1, 1].
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